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ABSTRACT

The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic
constitutive models is addressed. To this end, explicit forms for the corresponding material tangent
stiffness tensors are developed, and these are valid for the entire deformation range; i.e., with both distinct
as well as repeated principal-stretch values. Throughout the analysis the various implications of the
underlying property of separability of the strain-energy functions are exploited, thus leading to compact
final forms of the tensor expressions. In particular, this facilitated the treatment of complex cases of
uncoupled volumetric/deviatoric formulations for incompressible materials. The forms derived are also
amenable for use with symbolic-manipulation packages for systematic code generation.

1. INTRODUCTION

To a large extent, constitutive models of the so-called generalized Rivlin-Mooney type [1,2]; i.e.,

with the (stored) strain energy density written as a polynomial function in terms of the deformation

invariants, have dominated the phenomenological theory of isotropic hyperelasticity [1-6], as well as the

related computational literature on finite-strain elasticity [7-9], over the years. Recently, alternative

representations in terms of the principal stretches have become increasingly popular in nonlinear finite

element analyses [6,8,13]. In particular, several forms in this category were given by Ogden [5], Peng

[I1], and Valanis and Landel [12]. From both the mathematical and physical standpoints, these latter

models exhibit a number of attractive features. For instance, in the Valanis-Landel hypothesis [12], also

called the separability assumption, the underlying their mathematical structure (i.e., a strain energy

depending on separate symmetric functions in each of the principal stretches) was found to be essential

for effective and accurate characterization of the behavior of incompressible, and slightly-compressible,

rubbers at (relatively) high strain levels [5,6].



However, from the viewpoint of numerical implementation, the use of these models presents a

number of unique and difficult problems, which do not arise in alternative representations in terms of the

strain invariants. Basically, the main difficulty here stems from the fact that, in addition to their being

"reasonably complicated" functions of the strain components, the orthonormal basis of eigenvectors

associated with the principal stretches (eigenvalues) are not uniquely defined for the whole deformation

spectrum; i.e., nonuniqueness for the case of two or three repeated eigenvalues [14,16-18]. This will be

a major source of difficulty in obtaining the (directional) derivative of the tensor-valued stress function

(in terms of deformation tensor) needed to obtain the elastic-moduli matrix (i.e., material tangent stiffness).

These latter arrays are essential ingredients in any nonlinear incremental finite element solution; e.g. using

either the total Lagrangian, or Eulerian or "updated" Lagrange approaches [8,20]. General solutions of

this type will typically involve very complex, nonproportional deformation paths during which the number

Of uniquely-defined eigenvectors will change, and the necessity of obtaining explicit forms for the material

stiffness in such singular or limiting cases becomes obvious.

The type of problem mentioned above is not new; it has a long standing in various applications in

continuum mechanics [21-28]. An important case to the point concerns the use of Hencky-type, or

logarithmic strain measures in various contexts [25,27]; e.g. in conjunction with derivations of alternative

forms for its (material) time derivative [22,24], the associated conjugate stresses [25], the so-called Hill's

principal-axes techniques in the numerical treatment in [26], etc. However, to the present authors'

knowledge, the topic has not been previously addressed in the context of deriving material-moduli tensors,

for the general three-dimensional analysis. For suitable particular forms in the case of two repeated

eigenvalues, but restricted to the two-dimensional problem, we refer to [8,13] for simple derivations.

Addressing the above problem constitutes the main objective in the present paper. In particular, we

give details leading to the derivation of the proper explicit forms for the stress-deformation relationships,

and the associated material elasticity arrays, in terms of general components of the deformation tensor for

the entire regime of distinct as well as repeated; i.e., double or triple coalescence, eigenvalues of the strain

tensor. In this, two specific forms of the Ogden-type strain-energy functions are considered; these are of

sufficient generality to include most (if not all) of the models currently in common use. The first form is

for the so-called general, unconstrained, materials using the traditional definition of principal stretches.

The second is suitable for treating incompressible, and slightly compressible, cases and it makes use of

a modified set of principal stretches. These are associated with the concept of deformation decomposition

into pure dilation-isochoric distortion response components, which has been utilized extensively in recent

literature [5,8,9,13], including works on finite elastoplasticity [9,10]. For both of these models the

implications of the underlying separable property are exploited throughout the derivation, thus providing

a convenient means for performing the limiting process. For instance, this eliminates the need for a
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posteriori search and identification of various "singular" expressions that may (appropriately) combine to

Cr ive nonzero limits in scalar/tensor-valued composite terms [8,13].

2. PRELIMINARIES

For convenience, we summarize in this section some fundamentals and results pertinent to the large-

deformation analysis. These will be referred to repeatedly in subsequent discussions and derivations. Here,

and for the remainder of the paper, both indicial and the "counterpart" matrix notations will be used

interchangeably; repeated indices imply the summation convention. Only rectangular Cartesian coordinate

systems are employed, and we use lower-case subscripts for all tensor indices. For the most part, this is

sufficient for our purpose here, and there is no need to consider lowering or raising of indices. Note,

however, that the only exception to this concerns the definitions of "pull-back" and "push-forward" of

tensors given below.

2.1	 Basic-Kinematics

In line with common usage [e.g. 14-161, the set-up used to describe the nonlinear kinematics of a

continuum is as follows. Let P be a material point with position vector X in the undeformed (initial)

configuration "B". The map of P in the (current) deformed configuration "b" is denoted by p whose

location is given by x. The deformation map is defined by ^: B —> b, and

x = tp(X,t)	 F = d (p/OX (or F .  = a ^;k7X^)
	

(2.1)

where F is the (two-point) deformation gradient tensor for the current configuration "b" (at time t).

Because of the one-to-one nature of the deformation map, F is nonsingular and it can thus be expressed

as follows, using the (right) polar-decomposition theorem,

F=R U	 or F- =Rik Uki
	 (2.2)

where U is the symmetric, positive definite, pure stretch tensor, and R is a (proper-orthogonal) rigid-

rotation tensor, such that

RRT =I ; C=0=F T F ; J=detU=detF
	 (2.3)

where I is the second-order identity tensor, the superscript "T" indicates a transpose, and C is known as

the (right) Cauchy-Green deformation tensor and J represents the change in volume.

Through eqs. (2.1)-(2.3), several other strain measures can be defined. For example, we recall here

the following familiar expressions for Green-Lagrange strain, E, and Almansi strain, e, respectively,
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E _ (C -1)	 (2.4)

	

e	 (I - F-TF.-1)	 (2.5)

where ( )-1 indicates an inverse. These are material and spatial strain fields [Sec. 2.21, respectively.

As an alternative to Eq. (2.2), we may employ the following decomposition for F:

	

F= j 1/3 F 	 C_ J -2/3 C- 0 T F.	 (2.6)

into its two constituents; i.e., pure dilatation, J113 I, and isochoric distorsional deformation, F (det F =

C
1). Correspondingly, we refer to the Lagrangian tensor as the modified, volume-preserving, deformation

tensor. This provides for a proper treatment of uncoupled volumetric/deviatoric response of, for example,

incompressible rubbers [5,8,13].

Considering the second of Eqs. (2.6), the (directional) derivative formula [ 14,15] for C leads to:

DC • A = J -213 CA -3 (C -1 :A) C1	 (2.7a)

for any variation A in tensor C, and we thus have

0610C = J -213 CI (4) _ 3 C ® C -t J
	

(2.7b)

where symbols : and ® denote scalar multiplication (i.e., trace operation) and vector product of tensors,

respectively; and the components of the fourth-order, symmetric, unit tensor I(4) is given by

Ii^kl	 f ik 6il + N6jk)	
(2.8)

2.2	 Material (Convected) and Spatial Description

The geometric notions of "pull-back" and "push-forward" operations for tensor and vector fields

on manifolds [15] play an important role in developing "counterpart" expressions for the stress-

deformation and material-moduli (elasticity) tensors in both material (Lagrangian) and spatial (Eulerian)

settings. They provide the appropriate forms in finite element formulations based on total and updated

Lagrange methods, respectively [8,20].
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Proper definitions of these operations require identification of the precise placement of tensor

indices (i.e., "covariant" or "contravariant" components), even in a rectangular Cartesian setting. Therefore,

considering the case of "contravariant" tensor (vector) fields that are (independently) defined on various

configurations, and letting T be a second-order material tensor field defined on "B", its push-forward (%T

is a spatial tensor, T', of the same contravariant type on "b", or ^(B), which is given by

	

T' =^,T = FTFT
	

(2.9)

Alternatively, letting t be a "contravariant" two-tensor field on "b", its pull-back, t', on "B" is defined as

	

t' = ^ *t = F- t FT
	

(2.10)

As an application of this latter operation, we recall here that the (symmetric) second Piola-Kirchhoff

stress S is actually the pull -back of the Kirchhoff stress T = J 6 (where (T is the Cauchy or true stress

tensor); i.e.,

S=(^*T=F1TFT
	

(2.11)

Similarly, considering the (covariant) components of the material and spatial strain tensors E and e, we

have

	

e = (^ *E = F-T E F-t
	

(2.12)

Finally, we note that the above notions are also useful for deriving different forms for objective

rates for spatial stress and strain fields [14-16]. For example, we cite here the two most commonly used

rates of this type; i.e., the Truesdell rate of Cauchy stress, 6
0
, and the rate of deformation tensor, d(t =

time, and an overdot signifies a material time derivative):

	

- 
I( *. !(^*

T)1 - I FSF T 	 (2.13)

	

d- * [Tt (^ *e)1 - VT	 E V'	 (2.14)

In view of the above equations, we actually proceed for the remainder of the paper with derivations

in terms of the material -type tensors S and E and the associated rates; i.e., for the stress-deformation

relations and material-moduli (fourth -order) tensors D (recall Eq. 2.4):
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S = S(C)	 S = D(C)k	 (2.15)

where () indicates "a function of". The "counterpart" spatial forms follow directly by the push-

forward/pull-back according to Eqs. (2.11) to (2.14). In particular, for the spatial tensor D one has

Jc"s = D(e)d	 J7) = Fin, F,,i Dn,npq(C) FktrFiq	 (2.16)

2.3	 Spectral Representation

Denoting by Xi and n i (i = 1,2,3) the principal values of C (i.e., square of principal stretches) and

their associated eigenvectors, respectively, we can utilize the following representation for its components:

3	 3
2.17

i = l	 i=1

or, equivalently, in terms of the (rank-one) 30 matrices N i,

(i) for the case of distinct X ..1.

3
C=^^IiNi	 (2.18a)

i=1

(ii) for the case of double coalescence (Xr # X s = Xt = X):

	

C = (Xr-X)Nr+XI	 (2.18b)

(iii) for the case of triple coalescence (Xi = X2 = X3 = X):

3

C= X	 N i =  x I	 (2.18c)

i=1

In the above, the (r,s,t) is any cyclic permutation of (1,2,3), and tensors Ni are often referred to

as the (orthogonal) eigenprojection operators (i.e., on the null space of C - ) i I); e.g., see [ 18,19] for

further details. Note that, among the latter tensors, only those which are uniquely defined (i.e.,

corresponding to distinct eigenvalues) are employed in Eqs. (2.18).
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Explicit expressions for N i in terms of C can be obtained by suitable manipulations of Eqs. (2.18).

This leads to the following forms corresponding to previous cases (i) and (ii):

N =	 1

(i) r	 (Xr - X') (X, - ;t )	 (2.19a)

(ii) r	 (,\r -^)	 (2.19b)

These will prove very useful in obtaining the derivatives of the stress function S = S(C) in Secs. 5

and 6.

Remark 2.1. Alternatively, following standard procedures: e.g. as outlined in [17, p. 563], we can show
that

(^r _l\s) (^ r - l\ t) N r = Cof (C-fir 1)

where Cof ( ) denotes the adjoint matrix whose elements are the cofactors of (• ); i.e., with its (i,jyh
component given by

2 £mpi F_ngi (Cron -"r S imi ) (Cpq-X r Spq)

where E is the rank-three alternating tensor. Together with the identity:

Eijk F'Imn - 6d6im6kii + Siiklsfiu + S ill6i m - Oil%..bjn + Simsjlskn + Sinbkjjm)

this Cof tensor can be simplified to exactly the same form in the bracketed term on the right-hand side
of Eq. (2.19).

3. STRESS-DEFORMATION RELATIONS, THE SEPARABLE AND UNCOUPLED

VOLUMETRICIDEVIATORIC FORMS FOR STRAIN ENERGY FUNCTION

Restricting attention to the hyperelastic isotropic material case, the two forms of the strain-energy

function, W, considered here are written as:

N
W = W(Xi)	

a,, (X I" +^2n +^3,1)	 (3.1)

n=1

and

W = W(;y + h(.)	 (3.2)

where ;` are the principal values of C (see Eq. 2.6); h is a (convex) function of one variable J = (Al X12

3)112, and the an and an are material constants. The fiinctional dependence of W in Eq. (3.2) is assumed
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to be exactly in the same separable form as in Eq. (3. 1), but with the modified stretches ^r now replacing

Ai (where ^i = J-213 Ai from Eq. 2.6).

Note that in most practical applications, the h(J) is actually taken as a penalty function imposing

the incompressibility (or rather, the slight-compressibility) constraint [5,6,8,11,12]. In this connection, we

also note that an implicit assumption of strict incompressibility is often made [5,6] when using Eq. (3.1).

However, such an assumption is not implied here, and for emphasis we refer to this material model as the

unconstrained general case. Of course, adding a penalty-like term for the purpose of practical usage is the

same as for Eq. (3.2). However, the separate treatment of Eq. (3.1) will provide the basis for subsequent

derivations of the D tensor in the more complex situation of Eq. (3.2).

The constitutive functions S = S(C) and D = D(C) can now be obtained

2
S = 2 aw

	

0C	 X 15C

or

	

S _ 2 aW aC + h' aJ	 ; D 
_ 2 OS
	 (3.4)

	

a^ ac	 ac	 ac

where the primes denote differentiation of h with respect to its argument, J. Together with Eq. (2.7), the

expression in Eq. (3.4) can be reduced to

	

S= J -2/3 DEV 2 aw + p J C-1	 (3.5a)

00 
1

with

DEV (B) = B -3 (B: C) C-1	 (3.5b)

for any Lagrangian (stress-type) variation tensor B, and where p = h' is the (hydrostatic) pressure function.

The DEV operator in Eq. (3.5b) allows for a concise writing of several expressions given later; physically

it gives the deviatoric part of the material tensor A, see Sec 5.2. Its spatial counterpart: e.g. dev

a = 6 - 3 tr (6)I, where tr( ) indicates the trace of ( ), is an already well-known operation.
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4. MATERIAL-MODULI TENSOR. THE GENERAL UNRESTRAINED MODEL

4.1 Continuous Re p resentation of the Constitutive Stress Function

We start by first considering the case of Eqs. (3.1) and (3.3). Making use of the fact that, for the

present isotropic material, S is coaxial with C (i.e., identical eigenvectors for both), it admits a

representation in terms of its principal values S i (i = 1,2,3), and directions N i (Eq. 2.19), in exactly the

same form as in Eqs. (2.18). Explicitly, for the present separable W-fonn in Eq. (3. 1), we have

NSi = 2W'i = 2	 aiiart Ai	 = S(Xi)
	 (4.1)

i.e. the safne functional dependence S on only Xi, for each separate i = 1,2,3, where a comma-subscript

with W indicates (partial) differentiation with respect to (w.r.t.) the following principal-stretch

"coordinate". Combining Eqs. (2.18, 2.19), and (4.1) leads to

(i) S=aC2 +bC+cI	 (4.2a)

(ii) S=aC+bI	 (4.2b)

(iii) S = S(X) I 	 (4.2c)

where (i)-(iii) correspond to the three cases considered previously in Eq. (2.18), and

3
a	 - E in(X, - XS) S(Xt )	 (4.3a)

r=l

3

b =	 in( X 2 -AS)  S(X t )	 (4.3b)
r=1

3

c = - Y: in ('r - Y rd`s S(At)	 (4.3c)
r=1

1m	 (4.3d)
(^'I - ^12) Q12 - ^1 3 ) (13	 l)

a = [S(Ar) - S(X)] l (Xr - X)	 (4.4a)
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b = - [^ S(X,) - )`r S(X) ] l (Xr -	 (4.4b)

Recall that the (r,s,t) are still cyclic permutations of (1,2,3), and all notations follow those used previously

in Eqs. (2.18).

With the above expressions, one can easily proceed to investigate the continuity of the functional

representation of S = S(C). In fact, this simply amounts to showing that the limits for Eq. (4.2a) exist, and

that these are given by Eqs. (4.2b) and (4.2c) when the distinct eigenvalues (?,X S ,Xt) approach

and ()` ,^,a), respectively. For example, considering the former case, we let X= (Xr,XS,Xd	 X	 (Xr,X,X)

along the line normal to the plane ),, At, and there results, for the limits of a(X), b(X), etc.

Lim a =	 1	 [S (fir) - S(X) - (Xr - J\)S / (X)]
X— x	 (Xr - X)2

(4.5a)

Lim b =	 1	 2 ^ A - A2) S I (X) - 2X [S (fir) - S(A) ]^	 (4.5b)
X — ^	 (fir - X)

Lim c	 1 2 [X2 S(1'd + X,(X, - 2X) SW - Ar(Ar - A) S(X) ]	 (4.5c)
X~ a	 (Xr —^)

Lim C2(X)	 1	 [(1\r - X2) C(^) - (A,X2 - X2  I]
	

(4.5d)

Recall that a prime indicates differentiation w.r.t. the shown (single) argument. Substituting Eqs. (4.5) into

(4.2a), we obtain the expression in (4.2b).

Similar arguments can be used for the case of triple coalescence, by finding the limits of S in Eq.

(4.2a) when distinct A = (,'r,'s,'d X = (X,X,X) along the line normal to the principal space diagonal,

or hydrostatic axis [e.g., 17], Xr = X s = l\ t . The result is expression (4.2c).

Remark 4.1. Based on available results from strict mathematical analyses; i.e., the so-called Ball's Lemma

[28], the continuous differentiability of any tensor-valued function like S = S(C); e.g. its elastic moduli-

tensor D of concern here (see Eq. 3.3), is guaranteed if we can simply show that the limits of DQ) with

distinct X = QyXs ,A t) exist for the "degenerate" cases when (^ r,?` ,A) or (A,A,A) along the two lines

that are normal to the plane XS = fi t, and to the line X. = Xs = Xt, following similar arguments as the above.
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The presence of an individual 1, -argument for each S(^,)-function in various terms of D(C) will provide

for considerable simplifications here.

4.2	 Explicit Expressions for D

The general expression for tensor D can be obtained by applying the directional derivative formula

to Eq. (4.2a), recalling the second of Eqs. (3.4), and making use of the formula 0?' jOC = Nr (see

Eq. 2.17) for the present case (i) of distinct Xj(i=1,2,3). Although tedious, it is straight-forward to show

that

(i) D = a 1 P (C2,C2) + a2 
[P (C2 , C) + p(C',C'2)]

+ a3 [Q(C 2 ,I) + Q(I O)] + a4P(C,C)	 (4.6a)

+ a5 [Q( CI) + QJ C ) + ] + 2a6 J4)

where we define, for any two (second-order-symmetric-tensor) arguments G, H, the components of the

fourth-order tensors, P and Q, as

Pi jkl(G,H) = Gik Hjl + Gil Hjk	 (4.6b)

Qi jkl(G,H) = Gik Hjl + Gd Hjk + Gil Hik + GJAI	 (4.6c)

and I(4) is given in Eq. (2.8). We have also utilized the following definitions for scalar coefficients

ai (i=l —6):

3	 3	 3
a1 = Y: qr	

a2 = r` (X,r-II) 	 a3 =
 Y: 13 q, /X,
	 (4.6d)

r= 1	 r=1	 rL=•1

3	 3
a4 = E (j1 -Xr)2 

r1r	
a5 = E µr+j3gr(Xr-I1)/Xr

	
(4.6e)

r=1	 r=1

3

a6 = Y: g r( I3/Xr)2 + (Xr -II) Pr	 (4.6f)

r=1

in which



I1 = ^ l + 1`2 + 1`3	12 = )\ 1^'2 + A2^'3 + )`3 A 1	 13 = )Y_1'3	 (4.6g)

q r = [S, (X r) + (X S - fir) (A;+ Pd + (xt - xr) (µr + Ps) ] / [(Xr - ^'S)2(;^r - xt)2]	 (4.6h)

µr = S(^r) l [(Xr - Xs) (Xr - Xt)]	 (4.6i)

where the principal values S(1,-r) and their derivatives w.r.t. A r, S'(Xr), are found from Eqs. (4. 1), and the

(r,s,t) is again any cyclic permutation of (1,2,3).

Considering now the two degenerate cases (ii) and (iii) of double and triple coalescence of 14

values, respectively (Eq. 2.18), we proceed in exactly the same manner as in Sec. 4.1 to find the associated

limits of the expression in Eqs. (4.6). Omitting all the details and considerable simplifications involved,

we summarize the results as follows:

(ii) D = b 1 P(C , C) + b2 [Q(C") + Q(I,C)] + 2b31 (4)	 (4.7)

(iii) D = 2S'(X)I(4)	 (4.8)

where

b 1 = a{(Ar - )') [S,(Xr) + S'(1 ̀ ) ] - 2 [S(Xr) - S(X) 11	
(4.9a)

b2 = a I (A - )\ r) [A S'(; `r) + X'S' (X) ] + (fir + 1`) [S(Xr) - 
S(a) ] I	

(4.9b)

b3 = a ^(ar - X) [X2 S'(1`) + A2 S'(X,), - 2X ;r	 [S(x r) - S(A) ] r
(4.9c)

A)3 (4.9d)

Remark 4.2. (i) All formulas in Eqs. (4.6) - (4.8) exhibit proper symmetries in the D arrays; i.e., with

symmetric strain rates V (and C), and stress rate S tensors (see Eq. 2.15), Dijkl = 1/2 ( OSij l dCk!
+ OSjj / OClk ). (ii) In view of the existence of the collective limits in Eqs. (4.7) and (4.8), the continuous

differentiability of D follows immediately from results in [28] (although this is not true for the constituent

arguments, and Xi and Ni of Q. (iii) Restricting the dimension of the underlying space of all tensors in

Eqs. (4.6) - (4.8) to two, it can be shown that the D arrays corresponding to the general distinct-

eigenvalues case (e.g., X, = )`r $ 1`2 = A). and the repeated-two-eigenvalues case (i.e., X , =1`2 = 1`) are

actually those in Eqs. (4.7) and (4.8), respectively; no separate treatment is therefore necessary for this

two-dimensional problem.
3

Remark 4.3. Being also coaxial with C, the logarithmic strain, Qn U = (QnX 
112 

)N,, for distinct 1\r,

can be treated similar to the present case; i.e., its (material) time derivative rflkes the forms of Eqs. (4.6) -

(4.8), except now its principal values (in parenthesis in the above summation) replace SQ r). This may

prove useful in, for example, large-strain elastoplastic finite element applications as in [e.g. 271. We also
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note that the present formulas for the spectral representations of "coaxial" tensor-valued functions (e.g.

S here), and their derivatives, in terms of the argument tensor (e.g. C here), will prove very useful in

applications involving continuum-based damage constitutive models and the experimental characterization

of material coefficients, e.g. see [30].

5. MATERIAL-MODULI TENSOR. THE UNCOUPLED VOLUMETRIC IDEVIATORIC MODEL

The analysis in the present case proceeds parallel to that given in the previous section. We

therefore draw extensively on the results of Sec. 4 and omit many details.

5.1	 Continuous Representation of the Constitutive Stress Function

A
In view of the coaxiality of tensor C, S, and C, and making use of Eq. (3.2) to explicitly evaluate

the term DEV in Eq. (3.5), one can conveniently write the stress function in the present case as:

S _ -213g +
.f (i) C-1 + p J C -1	 (5.1a)

w ith

9 = 20wl0c	 Sr = 2Wr = S() d	 (5.1b)

3
(5.1c)

3 r=1

In this, the Sr (r=1,2,3) are the principal values of S„ and the comma subscript in W defines

differentiation w.r.t. niodified parameters ^. We make the important observation that, with Eq. (3.2), thek

displays exactly the same symmetric-single argianent dependence as in Eq. (4.1); i.e., S admits the same

limiting forms as in Eqs. (4.2) in terms of C..

With the neat separation of its constituents, no further elaboration is actually needed regarding the

representation of S in Eq. (5.1 a). The last two terms on the right-hand side are always well-behaved for

any /,,, whereas the continuity of S for distinct as well as repeated Xi follows immediately from the

analysis in Sec. 4 (simply replace Xi by Vii,, C by C„ and S by S in pertinent paragraphs). Note that this

will also be the case for constituents of the D tensor given in the sequel.

5.2	 Explicit Expressions for D

A careful examination of the derivatives of various terms in Eq. (5. la) w.r.t. components C reveals

that, for all cases (i.e., distinct as well as repeated eigenvalues), a single general expression can be written
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for D; some of the terms will, however, need to be "branched out" for their individual explicit evaluation.

That is

D = J-213DS +Y + (P
„J+P, J2)C -1 ® C-1- 3 S O C -1 +2C_ 1 ® DEV (M)	 (5.2a)

in which

	

Y = - [P J +f (^,)1 P ( C- 1 ,C- 1)	 (5.2b)

where the primes in p' and p” indicate first and second derivatives, respectively, w.r.t. J, the tensor

operator P is defined as in Eq. (4.6b), and the newly-introduced tensors DS (fourth-order) and M (second-

order) are defined by

D9 = 209/ OC = J -2/3A - 2 B OO- '	 (5.2c)
3

M = Of (^j) l aC = M(o
	

(5.2d)

The above decompositions in formulas (5.2c) and (5.2d) are made to facilitate the use of previous

expressions; namely, by its definition the (fourth-order) tensor A = A(C) is obtained in exactly the same

manner as was for D(C) in case of the unconstrained model of Sec. 4. Thus, using the following

replacements (assignment "operators"):

CS C ;	 ^ i —^`i ; s(a)'—^(^) 	 (5.3a)

and

	

ai(^r)—ai(;^r) for i = 1 to 6	 (5.3b)

	

bt(^,:),b/(X,.) for i = 1 to 3	 (5.3c)

we can now write

(i) A = Eq. (4.6) ; (ii) A = Eq. (4.7) ; (iii) A = Eq. (4.8) 	 (5.4)
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Similarly, we can use the above assignments in finding the scalar product of A and C needed in

the last term of Eq. (5.2c); see the scalar operator C -1 :A of Eq. (2.7a). There results, for the (second-order)

tensor B, and upon use of the Cayley-Hamilton theorem [14,15],

B(lri) = q l„^)C 2 + q2m) C + q3'" ) 1	 for m = (i) or (ii)	 (5.5)

B(in) = S(A)C
	

(5.6)

where for Case i

	

q l °[1 1 (11 - 2I2) + 13J a 1 +2(/i - 12) a2 + I l (2a3 +a4) +2a5	 (5.7a)

q2 = (I1I3 + I2 - I,I 2)a1 	 + 2(13 - I,I2)a2 - I2(2a3 + a4) + a6	 (5.7b)

q3 = I3(12 -12)a 1 + 21 1 I3a2 + i3 (2a3 + a4)	 (5.8a)

and for Case (ii):

q1	 11 b 1 +2b2	 q2 = v3 -b 1 I2 	q3 = b113	
(5 . 8b)

On the other hand, considering the definition of tensor M in Eq. (5.2d), its functional dependence

on C is of the same form as that of S in Eqs. (4.2) - (4.4) in terms of C for the unconstrained model.

Thus, invoking the assignment "equations" (5.3), together with M(^) 	 S(X i)„ we can write

(i) M = Eq. (4.2a) ; (ii) M = Eq. (4.2b) ; (iii) M = Eq. (4.2c) 	 (5.9)

where the principal values Mi = M(^ i) are given by (recall Eq. 5.1c)

M(j d _ - 3 (X W ii + W i)	 (5.10)

Finally, by virtue of the continuity of the "new” tensors A, B, S, and M in terms of C„ and

according to the previous analysis in Sec. 4, the expression for D in Eq. (5.2) is, ensured to be "well-

defined" for the entire range of Xi.

Remark 5.1. In implementation, one actually uses C-1 = (C2 - I 1 C + I2I)/I3 . Also, explicit expressions

are available for X i and A i directly in terms of C; e.g. using the (I 1 ,J2 , 0) set of invariants; see [17, p.

269] for details.
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6. COMPARISON WITH AVAILABLE RESULTS

By way of a simple illustration, we compare some of the expressions obtained here with those

available for the two-dimensional case in [e.g. 8]. To this end, we consider the case of (two-dimensional)

double coalescence, and recollect the final observation (iii) made in Remark 4.2. Thus, for the model of

Sec. 4, we simply use Eq. (4.8) here; i.e., with g = W rr (same for any r), D = 4 g 0 ) , which, despite its

extreme simplicity, leads to exactly the same coefficients; e.g., D I In = 4g, D I122 = 0, and D t212 — D1221

= 2g, etc., as those derived differently in [8,13].

Similarly, although not included here to limit the space, the detailed term-by-term expansions for

D have also confirmed the equivalence of the forms given in [8,13], for the general two-dimensional case

with distinct eigenvalues, to those obtained from Eq. (4.7) in the present three-dimensional case with

double coalescence (with appropriate restrictions of the range of subscripts in S, C, E, etc.). Of course,

modifications should be made in these comparisons to allow for different notations and definitions used

(e.g. the engineering definition for shear strains in V instead of the tensorial ones employed here, etc.).

7. CONCLUSIONS

Taken separately, the main constituents of the defonnation tensor, i.e., principal values and

associated eigenvectors, are, in general, not uniquely-defined and continuously differentiable functions.

A careful consideration is thus called for in implementing constitutive models formulated in terms of these

principal-strain measures, and this is the main problem addressed in this paper. In particular, the difficulty

is entirely bypassed by resorting to explicit derivations of appropriate forms of the material tangent-

stiffness matrices which are valid for the entire deformation range. These were developed here for two

specific forms of the Ogden-type, strain-energy functions, which actually encompass many of the popular

representations currently in use for ribber materials. A key feature in these is the underlying separability

property, and this was employed to obtain the concise final forms of the tensor expressions, thus leading

to their effective and robust numerical implementation.

In view of the results obtained, it became obvious that the task simply amounts to application of

a systematic limiting procedure for only one type of tensor-valued functions and their material time

derivatives; i.e., those with symmetric single-argument functions in their spectral representation. In
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particular, this was found essential in greatly simplifying the development given for the important case

of uncoupled volumetric/deviatoric formulations. Finally, an important area for effective utilization of the

present results would be to explore the feasibility of systematically deriving the fill expanded forms,

together with generating the associated computer codes for implementation, using computer symbolic-

manipulation packages [29].
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